Generalized Cauchy difference equations. II

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Cauchy Difference Equations. Ii

The main result is an improvement of previous results on the equation f(x) + f(y)− f(x+ y) = g[φ(x) + φ(y)− φ(x+ y)] for a given function φ. We find its general solution assuming only continuous differentiability and local nonlinearity of φ. We also provide new results about the more general equation f(x) + f(y)− f(x+ y) = g(H(x, y)) for a given function H. Previous uniqueness results required ...

متن کامل

On the Cauchy-problem for Generalized Kadomtsev-petviashvili-ii Equations

The Cauchy-problem for the generalized Kadomtsev-PetviashviliII equation ut + uxxx + ∂ −1 x uyy = (u )x, l ≥ 3, is shown to be locally well-posed in almost critical anisotropic Sobolev spaces. The proof combines local smoothing and maximal function estimates as well as bilinear refinements of Strichartz type inequalities via multilinear interpolation in Xs,b-spaces. Inspired by the work of Keni...

متن کامل

Stability of Generalized Additive Cauchy Equations

A familiar functional equation f(ax+b) = cf(x) will be solved in the class of functions f : R → R. Applying this result we will investigate the Hyers-Ulam-Rassias stability problem of the generalized additive Cauchy equation f ( a1x1+···+amxm+x0 )= m ∑ i=1 bif ( ai1x1+···+aimxm ) in connection with the question of Rassias and Tabor.

متن کامل

A Pair of Difference Differential Equations of Euler-cauchy Type

We study two classes of linear difference differential equations analogous to Euler-Cauchy ordinary differential equations, but in which multiple arguments are shifted forward or backward by fixed amounts. Special cases of these equations have arisen in diverse branches of number theory and combinatorics. They are also of use in linear control theory. Here, we study these equations in a general...

متن کامل

On Generalized Cauchy and Pexider Functional Equations over a Field

Let lK be a commutative field and (P, +) be a uniquely 2-divisible group (not necessarily abelian). We characterize all functions T: IK -+ P such that the Cauchy difference T(s+ t) T(t) T(s) depends only on the product st for all s, t E ~{. Further, we apply this result to describe solutions of the functional equation F(s + t) = K(st) 0 H(s) 0 G(t), where the unknown functions F, K, H, G map th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2008

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-08-09379-9